好职校,职校招生和学历提升信息网。

分站导航

热点关注

择校网在线报名

在线咨询

8:00-22:00

当前位置:

择校网

>

职校资讯

>

招生百科

立体几何高考题(高考数学最难的是什么 立体几何么)

来源:择校网   时间:2023-11-24

一、高考数学最难的是什么 立体几何么

1、立体几何不难,最难的是圆锥曲线和导数,如果你能把这两块硬骨头啃下来,那么你高考数学就在130以上了。

2、如果你立体几何不太好我告诉你一些学习方法:

3、首先把定理找全然后背得滚瓜烂熟,标准就是看见一个图不看题目,就知道这题大概要考什么,定理要用那些。

4、然后把立体几何的向量解法学好,90%的立体几何都可以用向量解,而且不太容易出错,而且不用背那么多的定理了(不过啊,定理还要背可以帮你快速解题,因为向量虽简单但是格式很严格,写不好就要扣分的,而且写的东西比较多,高考没有那么多的时间给你浪费,一道立体几何题的解题时间也就10~15分钟)但向量的好处就是不用想直接建系然后算就完事了,两种方法各有利弊,怎么用就看你对那种更熟悉了。

5、接着就是多做题了,当然了做完题和答案对,不只是看最后的得数,要一步一步的和答案比照,那少了就用红笔加上提醒自己,过一天再做一遍这题,再和答案比照直到和答案一样为止,这能保证你不扣冤枉分,如果你就按自己的走,一道题扣个3分都不算多,别觉得3分少,到了后面的难题,你做20分钟可能也就得3分,甚至1分都得不着,所以不该扣得分一定得把握住。

二、求文档: 2004全国高考数学立体几何题

1.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第10题,文科数学第10题]

已知正四面体ABCD的表面积为S,其四个面的中心分别为E、F、G、H.设四面体EFGH的表面积为T,则等于()

2.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第16题,文科数学第16题]

已知a、b为不垂直的异面直线,是一个平面,则a、b在上的射影有可能是.

①两条平行直线②两条互相垂直的直线

③同一条直线④一条直线及其外一点

在一面结论中,正确结论的编号是(写出所有正确结论的编号).

3.[2004年全国高考(四川云南吉林黑龙江)文科数学第6题]

正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()

4.[2004年全国高考(四川云南吉林黑龙江)理科数学第7题,文科数学第10题]

已知球O的半径为1,A、B、C三点都在球面上,且每两点间的球面距离均为,则

5.[2004年全国高考(四川云南吉林黑龙江)理科数学第16题,文科数学第16题]

①若有两个侧面垂直于底面,则该四棱柱为直四棱柱

②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱

③若四个侧面两两全等,则该四棱柱为直四棱柱

④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱

其中,真命题的编号是(写出所有正确结论的编号).

6.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第9题,文科数学第10题]

正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为()

7.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第13题,文科数学第14题]

用平面截半径为的球,如果球心到平面的距离为,那么截得小圆的面积与球的表面积的比值为.

8.[2004年全国高考(甘肃贵州青海宁夏新疆)文科数学第3题]

正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为()

9.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第7题]

对于直线m、n和平面,下面命题中的真命题是()

B.如果、n是异面直线,那么相交

10.[2004年全国高考(甘肃贵州青海宁夏新疆)文科数学第11题]

已知球的表面积为20,球面上有A、B、C三点.如果AB=AC=BC=2,则球心到平

11.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第10题]

已知球的表面积为20π,球面上有A、B、C三点.如果AB=AC=2,BC=,则球心

12.(2004年北京高考·理工第3题,文史第3题)

设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:

A.①和②B.②和③C.③和④D.①和④

13.(2004年北京高考·理工第4题,文史第6题)

如图,在正方体中,P是侧面内一动点,若P到直线BC与直线的距离相等,则动点P的轨迹所在的曲线是

14.(2004年北京高考·理工第11题,文史第12题)

某地球仪上北纬纬线的长度为,该地球仪的半径是__________cm,

15.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第20题,文科数学第21题,满分12分]

如图,已知四棱锥 P—ABCD,PB⊥AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°.

(II)求面APB与面CPB所成二面角的大小.

16.[2004年全国高考(四川云南吉林黑龙江)理科数学第20题,文科数学第20题,满分12分]

如图,直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=1,CB=,侧棱AA1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.

(Ⅱ)求面B1BD与面CBD所成二面角的大小.

17.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第20题,文科数学第21题,满分12分]

三棱锥P-ABC中,侧面PAC与底面ABC垂直,PA=PB=PC=3,

(2,理科)设AB=BC=,求AC与平面PBC所成角的大小.

(2,文科)如果AB=BC=,求侧面PBC与侧面PAC所成二面角的大小.

18.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第20题,文科数学第21题,本小题满分12分]

如图,四棱锥P—ABCD中,底面ABCD为矩形,AB=8,AD=4,侧面PAD为等边三角形,并且与底面所成二面角为60°.

19.(2004年北京高考·文史第16题,本小题满分14分)

如图,在正三棱柱中,AB=2,,由顶点B沿棱柱侧面经过棱到顶点的最短路线与的交点记为M,求:

(I)三棱柱的侧面展开图的对角线长

(III)平面与平面ABC所成二面角(锐角)的大小

20.(2004年北京高考·理工第16题,本小题满分14分)

如图,在正三棱柱中,AB=3,,M为的中点,P是BC上一点,且由P沿棱柱侧面经过棱到M的最短路线长为,设这条最短路线与的交点为N,求:

(I)该三棱柱的侧面展开图的对角线长

(III)平面NMP与平面ABC所成二面角(锐角)的大小(用反三角函数表示)

1.A2.①②④3.C4.B5.②④6.C7.8.A9.C

15.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第20题,文科数学第21题]

本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.

(I)解:如图,作PO⊥平面ABCD,垂足为点O.连结OB、OA、OD、OB与AD交于点E,连结PE.

于是OB平分AD,点E为AD的中点,所以PE⊥AD.

由此知∠PEB为面PAD与面ABCD所成二面角的平面角,

(II)解法一:如图建立直角坐标系,其中O为坐标原点,x轴平行于DA.

解法二:如图,取PB的中点G,PC的中点F,连结EG、AG、GF,则AG⊥PB,FG//BC,FG=BC.

又∵PE=BE,∴EG⊥PB,且∠PEG=60°.

所以所求二面角的大小为π-arctan.

16.[2004年全国高考(四川云南吉林黑龙江)理科数学第20题,文科数学第20题]

本小题主要考查线面关系和直棱柱等基础知识,同时考查空间想象能力和推理运算能力.

解法一:(Ⅰ)如图,连结CA1、AC1、CM,则CA1=

∵CB=CA1=,∴△CBA1为等腰三角形,

∴CD⊥A1B.∵A1C1=1,C1B1=,∴A1B1=

又BB1=1,A1B=2.∵△A1CB为直角三角形,D为A1B的中点,

∴CD=A1B=1,CD=CC1,又DM=AC1=,DM=C1M.

∴△CDM≌△CC1M,∠CDM=∠CC1M=90°,即CD⊥DM.

因为A1B、DM为平在BDM内两条相交直线,所以CD⊥平面BDM.

(Ⅱ)设F、G分别为BC、BD的中点,连结B1G、FG、B1F,则FG//CD,FG=CD.

由侧面矩形BB1A1A的对角线的交点为D知BD=B1D=A1B=1,

所以△BB1D是边长为1的正三角形.

于是B1G⊥BD,B1G=∴∠B1GF是所求二面角的平面角,

解法二:如图,以C为原点建立坐标系.

(Ⅰ)B(,0,0),B1(,1,0),A1(0,1,1),

因为A1B、DM为平面BDM内两条相交直线,所以CD⊥平面BDM.

(Ⅱ)设BD中点为G,连结B1G,则

17.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第20题,文科数学第21题]

本小题主要考查两个平面垂直的性质、直线与平面所成角等有关知识,以及逻辑思维能力和空间想象能力.满分12分.

立体几何高考题(高考数学最难的是什么 立体几何么)

(Ⅰ)证明:如图1,取AC中点D,连结PD、BD.

因为PA=PC,所以PD⊥AC,又已知面PAC⊥面ABC,

可知AC为△ABC的外接圆直径,因此AB⊥BC.

(Ⅱ,理科)解:如图2,作CF⊥PB于F,连结AF、DF.

因为△PBC≌△PBA,所以AF⊥PB,AF=CF.

因此直线AC在平面PBC内的射影为直线CF,

(2,文科)解:因为AB=BC,D为AC中点,所以BD⊥AC.

所以DE⊥PC,∠BED为所求二面角的平面角.

所以侧面PBC与侧面PAC所成的二面角为60°.

18.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第20题,文科数学第21题]

本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析

解:(Ⅰ)如图1,取AD的中点E,连结PE,则PE⊥AD.

作PO⊥平面在ABCD,垂足为O,连结OE.

根据三垂线定理的逆定理得OE⊥AD,

所以∠PEO为侧面PAD与底面所成的二面角的平面角,

由已知条件可知∠PEO=60°,PE=6,

(Ⅱ)解法一:如图1,以O为原点建立空间直角坐标系.通过计算可得

P(0,0,3),A(2,-3,0),B(2,5,0),D(-2,-3,0)

解法二:如图2,连结AO,延长AO交BD于点F.通过计算可得EO=3,AE=2,

因为直线AF为直线PA在平面ABCD内的身影,所以PA⊥BD.

19.(2004年北京高考·文史第16题,本小题满分14分)

本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力。满分14分。

解:(I)正三棱柱的侧面展开图是长为6,宽为2的矩形

(II)如图,将侧面绕棱旋转使其与侧面在同一平面上,点B运动到点D的位置,连接交于M,则就是由顶点B沿棱柱侧面经过棱到顶点C1的最短路线,其长为

(III)连接DB,,则DB就是平面与平面ABC的交线

就是平面与平面ABC所成二面角的平面角(锐角)

故平面与平面ABC所成的二面角(锐角)为

20.(2004年北京高考·理工第16题)

本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力。满分14分。

解:(I)正三棱柱的侧面展开图是一个长为9,宽为4的矩形,其对角线长为

(II)如图1,将侧面绕棱旋转使其与侧成在同一平面上,点P运动到点的位置,连接,则就是由点P沿棱柱侧面经过棱到点M的最短路线

(III)如图2,连结,则就是平面NMP与平面ABC的交线,作于H,又平面ABC,连结CH,由三垂线定理得,

就是平面NMP与平面ABC所成二面角的平面角(锐角)

故平面NMP与平面ABC所成二面角(锐角)的大小为

三、高考数学立体几何评分标准

1、两个二倍角公式,诱导公式,各给1分;

2、如果只有最后一步结果,没有过程,则给1分,不影响后续得分;

3、最后一步结果正确,但缺少上面的某一步过程,不扣分;

4、如果过程中某一步化简错了,则只给这一步前面的得分点。

不同省份的高考命题是不一样的,立体几何的分值也是不同的。从往年考题来看,立体几何主要考查点线面位置关系,锥体占多数,线面和面面位置关系较多,大多要考查锥体或者柱体和球体的结合,要特别关注三视图。

文科、理科考题难度差别不大,文科题目略为简单。文科、理科都是两道小题(一道选择题、一道填空题或者两道选择题)和一道大题,小题一题5分,大题12分,共22分。

四、高考中的立体几何题目多吗难吗

1、立体几何的难度不大,一般考察是选择1题,填空1题和解答1题.

2、选择填空一般考察立体几何基础知识,一些题目表面看很难,但只要深入分析就不难解答,具体可参见2006年安徽卷的那题.

3、大题目主要考细心,没什么难度.学了空间向量后,大题目肯定可以用综合法和坐标法两种方法解答.最好选择空间向量,只要计算正确就可得满分.有把握也可用传统综合法.

立体几何高考题和高考数学最难的是什么 立体几何么的问题分享结束啦,以上的文章解决了您的问题吗?欢迎您下次再来哦!

标签:      

2023-12-08 23:19:46
2023年招生 在线咨询
本站覆盖全国各省市中高职专本科院校及计划外招生院校,汇总各校招生要求及专业信息,如您今年尚未被任何院校录取,请自愿填写下表,我们将在全国范围内筛选适合您就读的大学,安排招生老师与您沟通。即刻报名,圆大学梦!
*

学生姓名

*

手机号码

*

户籍地址

*

当前学历

 

意向专业

立即提交 《隐私保障》

分享:

qq好友分享 QQ空间分享 新浪微博分享 微信分享 更多分享方式
(c)2023 www.chinazhenyi.com All Rights Reserved SiteMap 联系我们 | 陕ICP备2023010308号-3