圆周率是无理数吗,无理数指的是什么数
来源:择校网 时间:2025-02-19 08:41:20
一、什么是无理数
无理数,即非有理数之实数,不能写作两整数之比。若将它写成小数形式,它会是有无限位数、非循环的小数。常见的无理数有大部分的平方根、π和e(其中后两者同时为超越数)等。无理数的另一特征是无限的连分数表达式。://.tocatch.info/zh/无理数.htm
无限不循环十进小数。例如 1.010010001…,圆周率π=3.14159…等。无理数是由于人们度量线段长度的需要而产生的,大约在2000年前,古希腊人发现以一个正方形的边为长度单位去量这个正方形的对角线,对角线的长度不能用有理数表示。原因是,根据勾股定理,对角线长度l必须满足l2=12+12,即l2=2。但又能证明了任何一个有理数的平方都不等于 2,从而证明了没有一个有理数能表示对角线的长度。为了使任意线段的长度都能用数表示,只好引进一种新的数,即无限不循环的十进小数,并称为无理数。表示上述正方形对角线长的数是一个
二、什么叫做无理数
1、无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
2、常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
3、无理数的发现:伟大的数学家毕达哥拉斯认为:世界上只存在整数和分数,除此以外,没有别的什么数了。可是不久就出现了一个问题:当一个正方形的边长是1的时候,对角线的长m等于多少。是整数呢,还是分数。
4、毕达哥拉斯和他的门徒费了九牛二虎之力,也不知道这个m究竟是什么数。世界上除了整数和分数以外还有没有别的数。这个问题引起了学派成员希伯斯的兴趣,他花费了很多的时间去钻研,最终希伯斯断言:m既不是整数也不是分数,是当时人们还没有认识的新数。
5、从希伯斯的发现中,人们知道了除了整数和分数以外,还存在着一种新数,就是一个新数,当时人们觉得,整数和分数是容易理解的,就把整数和分数合称“有理数”,而希伯斯发现的这种新数不好理解,就取名为“无理数”。
三、无理数指的是什么数
1、常见的无理数有:非完全平方数的平方根、π和e、圆周率、等。
2、无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式。无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
3、无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如圆周率、等。
4、而有理数由所有分数,整数组成,总能写成整数、有限小数或无限循环小数,并且总能写成两整数之比,如21/7等。
5、在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能“测量”,即没有长度(“度量”)。
四、无理数是什么意思
1、无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
2、常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等。无理数的另一特征是无限的连分数表达式,无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
3、而有理数由所有分数,整数组成,总能写成整数、有限小数或无限循环小数,并且总能写成两整数之比,如21/7等。
4、15世纪意大利著名画家达.芬奇称之为“无理的数”,17世纪德国天文学家开普勒称之为“不可名状”的数。
5、然而真理毕竟是淹没不了的,毕氏学派抹杀真理才是“无理”。人们为了纪念希伯索斯这位为真理而献身的可敬学者,就把不可通约的量取名“无理数”——这就是无理数的由来。
6、由无理数引发的数学危机一直延续到19世纪下半叶。1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数,并把实数理论建立在严格的科学基础上,从而结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机。
关于圆周率是无理数吗和无理数指的是什么数的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。