正多面体,有几种正多面体为什么只有这几种呢
来源:择校网 时间:2024-12-02 19:44:42
一、有几种正多面体为什么只有这几种呢
仅有五种正多面体,即是正四面体、正六面体、正八面体、正十二面体和正二十面体。
所谓正多面体,当然要首先保证它是一个多面体,而它的特殊之处就在于它的每一个面都是正多边形,而且各个面的正多边形都是全等的。
也就是说,将正多面体的各个面剪下来,它们可以完全重合。所以虽然多面体很多,可是正多面体却很少,仅有五个。
正四面体是由四个全等的等边三角形组成的;正六面体是由六个全等的正方形组成的;正八面体是由八个全等的等边三角形组成的;正十二面体是由十二个全等的正五边形组成的;正二十面体是由二十个全等的等边三角形组成的。
1、如果两个正多面体是同类型的正多面体,那么这两个正多面体的二面角都相。
2、正多面体的外接球、内切球、内棱切球都存在,并且三球球心重合。
3、正多面体的外心、内心、内棱心重合的点称为该正多面体的中心。
4、正多面体除正四面体外过任顶点和正多面体中心的直线必然经过正多面体的另一顶点,并且这两个顶点到正多面体中心的距离都相等。
5、除正四面体外,连线经过正多面体的f11心的两点称为相财顶点,连两双相对顶点的两条棱称为正多面体的对棱,由对棱围成的两个面称为正多面体的对面。
6、除正四面体外,正多面体的对棱、对面都平行。
参考资料来源:百度百科-正多面体
二、正多面体性质
1、2006年3月9日正多边形是平面图形,是凸多边形,它的每个边都等长.例如正三角形,正方形,正五边形,正六边形等是几何中常见的正多边形.正多边形的中心是它外接圆和内切圆的圆心.
2、正多面体是每一个面都是正多边形,并且每个面都全等.在空间内只有五种正多面体:正四面体,正方体,正八面体,正十二面体,正二十面体.具体内容可参考高二立体几何中的几何体部分.
三、正多面体有多少种
仅有五种正多面体,即是正四面体、正六面体、正八面体、正十二面体和正二十面体。
所谓正多面体,当然要首先保证它是一个多面体,而它的特殊之处就在于它的每一个面都是正多边形,而且各个面的正多边形都是全等的。
也就是说,将正多面体的各个面剪下来,它们可以完全重合。所以虽然多面体很多,可是正多面体却很少,仅有五个。
正四面体是由四个全等的等边三角形组成的;正六面体是由六个全等的正方形组成的;正八面体是由八个全等的等边三角形组成的;正十二面体是由十二个全等的正五边形组成的;正二十面体是由二十个全等的等边三角形组成的。
1、如果两个正多面体是同类型的正多面体,那么这两个正多面体的二面角都相。
2、正多面体的外接球、内切球、内棱切球都存在,并且三球球心重合。
3、正多面体的外心、内心、内棱心重合的点称为该正多面体的中心。
4、正多面体除正四面体外过任顶点和正多面体中心的直线必然经过正多面体的另一顶点,并且这两个顶点到正多面体中心的距离都相等。
5、除正四面体外,连线经过正多面体的f11心的两点称为相财顶点,连两双相对顶点的两条棱称为正多面体的对棱,由对棱围成的两个面称为正多面体的对面。
6、除正四面体外,正多面体的对棱、对面都平行。
参考资料来源:百度百科-正多面体
四、有几种正多面体
仅有五种正多面体,即是正四面体、正六面体、正八面体、正十二面体和正二十面体。
所谓正多面体,当然要首先保证它是一个多面体,而它的特殊之处就在于它的每一个面都是正多边形,而且各个面的正多边形都是全等的。
也就是说,将正多面体的各个面剪下来,它们可以完全重合。所以虽然多面体很多,可是正多面体却很少,仅有五个。
正四面体是由四个全等的等边三角形组成的;正六面体是由六个全等的正方形组成的;正八面体是由八个全等的等边三角形组成的;正十二面体是由十二个全等的正五边形组成的;正二十面体是由二十个全等的等边三角形组成的。
1、如果两个正多面体是同类型的正多面体,那么这两个正多面体的二面角都相。
2、正多面体的外接球、内切球、内棱切球都存在,并且三球球心重合。
3、正多面体的外心、内心、内棱心重合的点称为该正多面体的中心。
4、正多面体除正四面体外过任顶点和正多面体中心的直线必然经过正多面体的另一顶点,并且这两个顶点到正多面体中心的距离都相等。
5、除正四面体外,连线经过正多面体的f11心的两点称为相财顶点,连两双相对顶点的两条棱称为正多面体的对棱,由对棱围成的两个面称为正多面体的对面。
6、除正四面体外,正多面体的对棱、对面都平行。
参考资料来源:百度百科-正多面体
好了,文章到此结束,希望可以帮助到大家。