好职校,职校招生和学历提升信息网。

分站导航

热点关注

择校网在线报名

在线咨询

8:00-22:00

当前位置:

择校网

>

职校资讯

>

招生百科

高中数学几何公式 高中数学立体几何公式

来源:择校网   时间:2025-01-12 08:37:02

一、高中数学立体几何公式

1、①如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

2、②如果两个平行平面同时和第三个平面相交,那么它们的交线平行。

3、③垂直于同一平面的两条直线平行。

4、①在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

5、②在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直。

6、③若一直线垂直于一平面,这条直线垂直于平面内所有直线。

7、补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。

8、①如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。

9、②两个平面平行,其中一个平面内的直线必平行于另一个平面。

10、①一个平面内的两条相交直线分别平行于另一个平面内两相交直线,这两个平面平行。

11、②垂直于同一条直线的两个平面平行。

12、①如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。

13、②如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。

14、③一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

15、④如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。

二、高中数学公式大全,最主要解析几何

1、三角不等式|a b|≤|a| |b||a-b|≤|a| |b||a|≤b-b≤a≤b

2、一元二次方程的解-b √(b^2-4ac)/2a-b-√(b^2-4ac)/2a

3、根与系数的关系 X1 X2=-b/a X1*X2=c/a注:韦达定理

4、b^2-4ac=0注:方程有两个相等的实根

5、b^2-4ac>0注:方程有两个不等的实根

6、b^2-4ac<0注:方程没有实根,有共轭复数根

7、sin(A-B)=sinAcosB-sinBcosA

8、tan(A B)=(tanA tanB)/(1-tanAtanB)

9、tan(A-B)=(tanA-tanB)/(1 tanAtanB)

10、cot(A B)=(cotAcotB-1)/(cotB cotA)

11、cot(A-B)=(cotAcotB 1)/(cotB-cotA)

12、cos2a=(cosa)^2-(sina)^2=2(cosa)^2-1=1-2(sina)^2

13、sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

14、cos(A/2)=√((1 cosA)/2) cos(A/2)=-√((1 cosA)/2)

15、tan(A/2)=√((1-cosA)/((1 cosA)) tan(A/2)=-√((1-cosA)/((1 cosA))

16、cot(A/2)=√((1 cosA)/((1-cosA)) cot(A/2)=-√((1 cosA)/((1-cosA))

17、sinA sinB=2sin((A B)/2)cos((A-B)/2

18、cosA cosB=2cos((A B)/2)sin((A-B)/2)

19、1 2 3 4 5 6 7 8 9 … n=n(n 1)/2

20、1 3 5 7 9 11 13 15 … (2n-1)=n2

21、2 4 6 8 10 12 14 … (2n)=n(n 1) 5

22、1^2 2^2 3^2 4^2 5^2 6^2 7^2 8^2 … n^2=n(n 1)(2n 1)/6

23、1^3 2^3 3^3 4^3 5^3 6^3 …n^3=n2(n 1)2/4

24、1*2 2*3 3*4 4*5 5*6 6*7 … n(n 1)=n(n 1)(n 2)/3

25、正弦定理 a/sinA=b/sinB=c/sinC=2R注:其中 R表示三角形的外接圆半径

26、余弦定理 b^2=a^2 c^2-2accosB注:角B是边a和边c的夹角

27、圆的标准方程(x-a)^2 (y-b)^2=^r2注:(a,b)是圆心坐标

28、圆的一般方程 x^2 y^2 Dx Ey F=0注:D^2 E^2-4F>0

29、抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py

30、直棱柱侧面积 S=c*h斜棱柱侧面积 S=c'*h

31、正棱锥侧面积 S=1/2c*h'正棱台侧面积 S=1/2(c c')h'

32、圆台侧面积 S=1/2(c c')l=pi(R r)l球的表面积 S=4pi*r2

33、圆柱侧面积 S=c*h=2pi*h圆锥侧面积 S=1/2*c*l=pi*r*l

34、弧长公式 l=a*r a是圆心角的弧度数r>0扇形面积公式 s=1/2*l*r

35、锥体体积公式 V=1/3*S*H圆锥体体积公式 V=1/3*pi*r2h

36、斜棱柱体积 V=S'L注:其中,S'是直截面面积, L是侧棱长

37、柱体体积公式 V=s*h圆柱体 V=pi*r2h

38、5过一点有且只有一条直线和已知直线垂直

39、6直线外一点与直线上各点连接的所有线段中,垂线段最短

40、7平行公理经过直线外一点,有且只有一条直线与这条直线平行

41、8如果两条直线都和第三条直线平行,这两条直线也互相平行

42、15定理三角形两边的和大于第三边

43、16推论三角形两边的差小于第三边

44、17三角形内角和定理三角形三个内角的和等于180°

45、18推论1直角三角形的两个锐角互余

46、19推论2三角形的一个外角等于和它不相邻的两个内角的和

47、20推论3三角形的一个外角大于任何一个和它不相邻的内角

48、21全等三角形的对应边、对应角相等

49、22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

50、 23角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

51、24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

52、25边边边公理(SSS)有三边对应相等的两个三角形全等

53、26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

54、27定理1在角的平分线上的点到这个角的两边的距离相等

55、28定理2到一个角的两边的距离相同的点,在这个角的平分线上

56、29角的平分线是到角的两边距离相等的所有点的集合

57、30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

58、31推论1等腰三角形顶角的平分线平分底边并且垂直于底边

59、32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

60、33推论3等边三角形的各角都相等,并且每一个角都等于60°

61、34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

62、35推论1三个角都相等的三角形是等边三角形

63、36推论 2有一个角等于60°的等腰三角形是等边三角形

64、37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

65、38直角三角形斜边上的中线等于斜边上的一半

66、39定理线段垂直平分线上的点和这条线段两个端点的距离相等

67、40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

68、41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

69、42定理1关于某条直线对称的两个图形是全等形

70、43定理 2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

71、44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

72、45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

73、46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2 b^2=c^2

74、47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2 b^2=c^2,那么这个三角形是直角三角形

75、50多边形内角和定理 n边形的内角的和等于(n-2)×180°

76、51推论任意多边的外角和等于360°

77、52平行四边形性质定理1平行四边形的对角相等

78、53平行四边形性质定理2平行四边形的对边相等

79、54推论夹在两条平行线间的平行线段相等

80、55平行四边形性质定理3平行四边形的对角线互相平分

81、56平行四边形判定定理1两组对角分别相等的四边形是平行四边形

82、57平行四边形判定定理2两组对边分别相等的四边形是平行四边形

83、58平行四边形判定定理3对角线互相平分的四边形是平行四边形

84、59平行四边形判定定理4一组对边平行相等的四边形是平行四边形

85、60矩形性质定理1矩形的四个角都是直角

86、61矩形性质定理2矩形的对角线相等

87、62矩形判定定理1有三个角是直角的四边形是矩形

88、63矩形判定定理2对角线相等的平行四边形是矩形

89、64菱形性质定理1菱形的四条边都相等

90、65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角

91、66菱形面积=对角线乘积的一半,即S=(a×b)÷2

92、67菱形判定定理1四边都相等的四边形是菱形

93、68菱形判定定理2对角线互相垂直的平行四边形是菱形

94、69正方形性质定理1正方形的四个角都是直角,四条边都相等

95、70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

96、71定理1关于中心对称的两个图形是全等的

97、72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

98、73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

99、74等腰梯形性质定理等腰梯形在同一底上的两个角相等

100、76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

101、78平行线等分线段定理如果一组平行线在一条直线上截得的线段

102、相等,那么在其他直线上截得的线段也相等

103、79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰

104、80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边

105、81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半

106、82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a b)÷2 S=L×h

107、83(1)比例的基本性质如果a:b=c:d,那么ad=bc

108、如果ad=bc,那么a:b=c:d wc呁/S∕?

109、84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d

110、85(3)等比性质如果a/b=c/d=…=m/n(b d … n≠0),那么

111、86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例

112、87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

113、88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

114、89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

115、90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

116、91相似三角形判定定理1两角对应相等,两三角形相似(ASA)

117、92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

118、93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)

119、94判定定理3三边对应成比例,两三角形相似(SSS)

120、95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

121、96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

122、97性质定理2相似三角形周长的比等于相似比

123、98性质定理3相似三角形面积的比等于相似比的平方

124、99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

125、100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

126、101圆是定点的距离等于定长的点的集合

127、102圆的内部可以看作是圆心的距离小于半径的点的集合

128、103圆的外部可以看作是圆心的距离大于半径的点的集合

129、105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

130、106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

131、107到已知角的两边距离相等的点的轨迹,是这个角的平分线

132、108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

133、109定理不在同一直线上的三点确定一个圆。

134、110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

135、111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

136、②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

137、③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

138、112推论2圆的两条平行弦所夹的弧相等

139、113圆是以圆心为对称中心的中心对称图形

140、114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

141、115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

142、116定理一条弧所对的圆周角等于它所对的圆心角的一半

143、117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

144、118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

145、119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

146、120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

三、高中数学公式

就是y等于ax的平方加上 bx再加上 c

它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)准线方程为x=-p/2

由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py

圆的标准方程(x-a)2 (y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程 x2 y2 Dx Ey F=0注:D2 E2-4F>0

椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。

椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高

sin(A B)=sinAcosB cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB sinAsinB

tan(A B)=(tanA tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1 tanAtanB)

cot(A B)=(cotAcotB-1)/(cotB cotA) cot(A-B)=(cotAcotB 1)/(cotB-cotA)

tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

sinα sin(α 2π/n) sin(α 2π*2/n) sin(α 2π*3/n) …… sin[α 2π*(n-1)/n]=0

cosα cos(α 2π/n) cos(α 2π*2/n) cos(α 2π*3/n) …… cos[α 2π*(n-1)/n]=0以及

sin^2(α) sin^2(α-2π/3) sin^2(α 2π/3)=3/2

tanAtanBtan(A B) tanA tanB-tan(A B)=0

sin4A=-4*(cosA*sinA*(2*sinA^2-1))

tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2 tanA^4)

sin5A=16sinA^5-20sinA^3 5sinA

cos5A=16cosA^5-20cosA^3 5cosA

tan5A=tanA*(5-10*tanA^2 tanA^4)/(1-10*tanA^2 5*tanA^4)

sin6A=2*(cosA*sinA*(2*sinA 1)*(2*sinA-1)*(-3 4*sinA^2))

cos6A=((-1 2*cosA^2)*(16*cosA^4-16*cosA^2 1))

tan6A=(-6*tanA 20*tanA^3-6*tanA^5)/(-1 15*tanA^2-15*tanA^4 tanA^6)

sin7A=-(sinA*(56*sinA^2-112*sinA^4-7 64*sinA^6))

cos7A=(cosA*(56*cosA^2-112*cosA^4 64*cosA^6-7))

tan7A=tanA*(-7 35*tanA^2-21*tanA^4 tanA^6)/(-1 21*tanA^2-35*tanA^4 7*tanA^6)

sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2 8*sinA^4 1))

cos8A=1 (160*cosA^4-256*cosA^6 128*cosA^8-32*cosA^2)

tan8A=-8*tanA*(-1 7*tanA^2-7*tanA^4 tanA^6)/(1-28*tanA^2 70*tanA^4-28*tanA^6 tanA^8)

sin9A=(sinA*(-3 4*sinA^2)*(64*sinA^6-96*sinA^4 36*sinA^2-3))

cos9A=(cosA*(-3 4*cosA^2)*(64*cosA^6-96*cosA^4 36*cosA^2-3))

tan9A=tanA*(9-84*tanA^2 126*tanA^4-36*tanA^6 tanA^8)/(1-36*tanA^2 126*tanA^4-84*tanA^6 9*tanA^8)

sin10A=2*(cosA*sinA*(4*sinA^2 2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2 5 16*sinA^4))

cos10A=((-1 2*cosA^2)*(256*cosA^8-512*cosA^6 304*cosA^4-48*cosA^2 1))

tan10A=-2*tanA*(5-60*tanA^2 126*tanA^4-60*tanA^6 5*tanA^8)/(-1 45*tanA^2-210*tanA^4 210*tanA^6-45*tanA^8 tanA^10)

sinα=2tan(α/2)/[1 tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1 tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1 cosA)/2) cos(A/2)=-√((1 cosA)/2)

tan(A/2)=√((1-cosA)/((1 cosA)) tan(A/2)=-√((1-cosA)/((1 cosA))

cot(A/2)=√((1 cosA)/((1-cosA)) cot(A/2)=-√((1 cosA)/((1-cosA))

2sinAcosB=sin(A B) sin(A-B) 2cosAsinB=sin(A B)-sin(A-B)

2cosAcosB=cos(A B)-sin(A-B)-2sinAsinB=cos(A B)-cos(A-B)

sinA sinB=2sin((A B)/2)cos((A-B)/2 cosA cosB=2cos((A B)/2)sin((A-B)/2)

tanA tanB=sin(A B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

cotA cotBsin(A B)/sinAsinB-cotA cotBsin(A B)/sinAsinB

1 2 3 4 5 6 7 8 9 … n=n(n 1)/2 1 3 5 7 9 11 13 15 … (2n-1)=n2

2 4 6 8 10 12 14 … (2n)=n(n 1) 1^2 2^2 3^2 4^2 5^2 6^2 7^2 8^2 … n^2=n(n 1)(2n 1)/6

1^3 2^3 3^3 4^3 5^3 6^3 …n^3=(n(n 1)/2)^2 1*2 2*3 3*4 4*5 5*6 6*7 … n(n 1)=n(n 1)(n 2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R注:其中 R表示三角形的外接圆半径

余弦定理 b2=a2 c2-2accosB注:角B是边a和边c的夹角

乘法与因式分 a2-b2=(a b)(a-b) a3 b3=(a b)(a2-ab b2) a3-b3=(a-b(a2 ab b2)

三角不等式|a b|≤|a| |b||a-b|≤|a| |b||a|≤b<=>-b≤a≤b

-b √(b2-4ac)/2a-b-√(b2-4ac)/2a

根与系数的关系 x1 x2=-b/a x1*x2=c/a注:韦达定理

判别式 b2-4a=0注:方程有相等的两实根

b2-4ac>0注:方程有两个不相等的个实根

b2-4ac<0注:方程有共轭复数根

圆的标准方程(x-a)2 (y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程 x2 y2 Dx Ey F=0注:D2 E2-4F>0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c*h斜棱柱侧面积 S=c'*h

正棱锥侧面积 S=1/2c*h'正棱台侧面积 S=1/2(c c')h'

圆台侧面积 S=1/2(c c')l=pi(R r)l球的表面积 S=4pi*r2

圆柱侧面积 S=c*h=2pi*h圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r>0扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H圆锥体体积公式 V=1/3*pi*r2h

斜棱柱体积 V=S'L注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=s*h圆柱体 V=pi*r2h

已知三角形三边a,b,c,半周长p,则S=√[p(p- a)(p- b)(p- c)](海伦公式)(p=(a b c)/2)

已知三角形两边a,b,这两边夹角C,则S=absinC/2

设三角形三边分别为a、b、c,内切圆半径为r

设三角形三边分别为a、b、c,外接圆半径为r

已知三角形三边a、b、c,则S=√{1/4[c^2a^2-((c^2 a^2-b^2)/2)^2]}(“三斜求积”南宋秦九韶)

| c d 1|为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC

选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】

S=√[(Ma Mb Mc)*(Mb Mc-Ma)*(Mc Ma-Mb)*(Ma Mb-Mc)]/3

梯形的面积=(上底 下底)×高÷2

圆柱的表面积=上下底面面积 侧面积

5过一点有且只有一条直线和已知直线垂直

6直线外一点与直线上各点连接的所有线段中,垂线段最短

7平行公理经过直线外一点,有且只有一条直线与这条直线平行

8如果两条直线都和第三条直线平行,这两条直线也互相平行

15定理三角形两边的和大于第三边

16推论三角形两边的差小于第三边

17三角形内角和定理三角形三个内角的和等于180°

18推论1直角三角形的两个锐角互余

19推论2三角形的一个外角等于和它不相邻的两个内角的和

20推论3三角形的一个外角大于任何一个和它不相邻的内角

21全等三角形的对应边、对应角相等

22边角边公理(sas)有两边和它们的夹角对应相等的两个三角形全等

23角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等

24推论(aas)有两角和其中一角的对边对应相等的两个三角形全等

25边边边公理(sss)有三边对应相等的两个三角形全等

26斜边、直角边公理(hl)有斜边和一条直角边对应相等的两个直角三角形全等

27定理1在角的平分线上的点到这个角的两边的距离相等

28定理2到一个角的两边的距离相同的点,在这个角的平分线上

29角的平分线是到角的两边距离相等的所有点的集合

30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

31推论1等腰三角形顶角的平分线平分底边并且垂直于底边

32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33推论3等边三角形的各角都相等,并且每一个角都等于60°

34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35推论1三个角都相等的三角形是等边三角形

36推论 2有一个角等于60°的等腰三角形是等边三角形

37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

38直角三角形斜边上的中线等于斜边上的一半

39定理线段垂直平分线上的点和这条线段两个端点的距离相等

40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42定理1关于某条直线对称的两个图形是全等形

43定理 2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2 b^2=c^2

47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2 b^2=c^2,那么这个三角形是直角三角形

48定理四边形的内角和等于360°

50多边形内角和定理 n边形的内角的和等于(n-2)×180°

51推论任意多边的外角和等于360°

52平行四边形性质定理1平行四边形的对角相等

53平行四边形性质定理2平行四边形的对边相等

54推论夹在两条平行线间的平行线段相等

55平行四边形性质定理3平行四边形的对角线互相平分

56平行四边形判定定理1两组对角分别相等的四边形是平行四边形

57平行四边形判定定理2两组对边分别相等的四边形是平行四边形

58平行四边形判定定理3对角线互相平分的四边形是平行四边形

59平行四边形判定定理4一组对边平行相等的四边形是平行四边形

60矩形性质定理1矩形的四个角都是直角

61矩形性质定理2矩形的对角线相等

62矩形判定定理1有三个角是直角的四边形是矩形

63矩形判定定理2对角线相等的平行四边形是矩形

64菱形性质定理1菱形的四条边都相等

65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角

66菱形面积=对角线乘积的一半,即s=(a×b)÷2

67菱形判定定理1四边都相等的四边形是菱形

68菱形判定定理2对角线互相垂直的平行四边形是菱形

69正方形性质定理1正方形的四个角都是直角,四条边都相等

70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71定理1关于中心对称的两个图形是全等的

72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74等腰梯形性质定理等腰梯形在同一底上的两个角相等

76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰

80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边

81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半

82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 l=(a b)÷2 s=l×h

83(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d

84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d

85(3)等比性质如果a/b=c/d=…=m/n(b d … n≠0),那么(a c … m)/(b d … n)=a/b

86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例

87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91相似三角形判定定理1两角对应相等,两三角形相似(asa)

92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93判定定理2两边对应成比例且夹角相等,两三角形相似(sas)

94判定定理3三边对应成比例,两三角形相似(sss)

95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97性质定理2相似三角形周长的比等于相似比

98性质定理3相似三角形面积的比等于相似比的平方

99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等

100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

101圆是定点的距离等于定长的点的集合

102圆的内部可以看作是圆心的距离小于半径的点的集合

103圆的外部可以看作是圆心的距离大于半径的点的集合

105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

107到已知角的两边距离相等的点的轨迹,是这个角的平分线

108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

109定理不在同一直线上的三点确定一个圆。

110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

112推论2圆的两条平行弦所夹的弧相等

113圆是以圆心为对称中心的中心对称图形

114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

116定理一条弧所对的圆周角等于它所对的圆心角的一半

117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

118推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径

119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

123切线的性质定理圆的切线垂直于经过切点的半径

124推论1经过圆心且垂直于切线的直线必经过切点

125推论2经过切点且垂直于切线的直线必经过圆心

126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

127圆的外切四边形的两组对边的和相等

128弦切角定理弦切角等于它所夹的弧对的圆周角

129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等

131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的

132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割

线与圆交点的两条线段长的比例中项

133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

134如果两个圆相切,那么切点一定在连心线上

135①两圆外离 d>r r②两圆外切 d=r r

④两圆内切 d=r-r(r>r)⑤两圆内含d<r-r(r>r)

136定理相交两圆的连心线垂直平分两圆的公共弦

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

139正n边形的每个内角都等于(n-2)×180°/n

140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

141正n边形的面积sn=pnrn/2 p表示正n边形的周长

142正三角形面积√3a/4 a表示边长

143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为

360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

145扇形面积公式:s扇形=nπr2/360=lr/2

146内公切线长= d-(r-r)外公切线长= d-(r r)

148等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合

149如果一个三角形的两个角相等,那么这两个角所对的边也相等

150三条边都相等的三角形叫做等边三角形

文章到此结束,如果本次分享的高中数学几何公式和高中数学立体几何公式的问题解决了您的问题,那么我们由衷的感到高兴!

标签:      

2025年招生 在线咨询
本站覆盖全国各省市中高职专本科院校及计划外招生院校,汇总各校招生要求及专业信息,如您今年尚未被任何院校录取,请自愿填写下表,我们将在全国范围内筛选适合您就读的大学,安排招生老师与您沟通。即刻报名,圆大学梦!
*

学生姓名

*

手机号码

*

户籍地址

*

当前学历

 

意向专业

立即提交 《隐私保障》

分享:

qq好友分享 QQ空间分享 新浪微博分享 微信分享 更多分享方式
(c)2025 www.chinazhenyi.com All Rights Reserved SiteMap 联系我们 | 陕ICP备2023010308号-3