顶点式 函数顶点式是什么
来源:择校网 时间:2024-11-23 00:01:31
一、把一般式化为顶点式
2、通过配方可得顶点式——形成公式:
顶点式:y=a(x-h)² k(a≠0,a、h、k为常数),顶点坐标:(h,k)。另一种形式:y=a(x h)² k(a≠0),则此时顶点坐标为(-h,k)。
1.二次函数y=ax2,y=a(x-h)2,y=a(x-h)²; k,y=ax²; bx c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
顶点坐标(0,0),(h,0),(h,k)
当h>0时,y=a(x-h)²;的图象可由抛物线y=ax2向右平行移动h个单位得到,
当h<0时,则向左平行移动|h|个单位得到.
当h>0,k>0时,将抛物线y=ax²;向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²; k的图象;
当h>0,k<0时,将抛物线y=ax²;向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²; k的图象;
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²; k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²; k的图象;
因此,研究抛物线 y=ax²; bx c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)²; k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2.抛物线y=ax²; bx c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=,顶点坐标是().
3.抛物线y=ax²; bx c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a被时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.
4.抛物线y=ax²; bx c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b²;-4ac>0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax2 bx c=0
(a≠0)的两根.这两点间的距离AB=|x2-x1|=.
当△=0.图象与x轴只有一个交点;
当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
5.抛物线y=ax²; bx c的最值:如果a>0(a<0),则当x=时,y最小(大)值=.
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)²; k(a≠0).
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x1)(x-x2)(a≠0).
在平面直角坐标系中,任何一个关于x,y的二元一次方程Ax By C=0(A,B不全为0)都表示一条直线。
我们把简称方程:Ax By C=0(其中A、B不同时为0)叫做直线方程的一般式。
⑶与x轴重合时,A=0 B≠0 C=0 y=0
⑷与y轴重合时,A≠0 B=0 C=0 x=0
两直线平行时:普遍适用:A1B2=A2B1,方便记忆运用:A1/A2=B1/B2≠C1/C2( A2*B2*C2≠0)[1]
两直线重合时:A1/A2=B1/B2=C1/C2( A2*B2*C2≠0)
两直线相交时:A1/A2≠B1/B2( A2*B2≠0)
参考资料:百度百科-顶点式百度百科-一般式
二、顶点式公式是什么
1、顶点式:y=a(x-h)² k(a≠0,a、h、k为常数),顶点坐标:(h,k)。
2、通用格式,用数学符号表示,各个量之间的一定关系(如定律或定理)的式子,能普遍应用于同类事物的方式方法。
3、公式,在数学、物理学、化学、生物学等自然科学中用数学符号表示几个量之间关系的式子。具有普遍性,适合于同类关系的所有问题。在数理逻辑中,公式是表达命题的形式语法对象,除了这个命题可能依赖于这个公式的自由变量的值之外。
4、根据谓词逻辑的语义推导规则,语义应该具有一致性,就是对于一个命题逻辑语句集f,当且仅当至少存在这样一种解释i,f的一切元素在i之下都是真的,那么,f是语义一致的。在命题逻辑语义学内,一个赋值不能同时把真和假给予某个命题原子式。在命题逻辑语义学中,在同一解释下,一个集合不能既属于某个谓词的外延又不属于该谓词的外延。
三、抛物线顶点式是什么
抛物线顶点式是y=a(X-h)2 k(a、h、k为常数,a≠0)。
一般式:ax² bx c(a、b、c为常数,a≠0)。
交点式(两根式):y=a(x-x1)(x-x2)(a≠0)。
其中抛物线y=aX2 bX c(a、b、c为常数,a≠0)与x轴交点坐标,即方程aX2 bX c=0的两实数根。
1、抛物线是轴对称图形,对称轴为直线x=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)。
2、二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
四、函数顶点式是什么
1、顶点式公式是函数解析式顶点式公式即为二次函数顶点公式:y=a(x-h) k(a≠0,a、h、k为常数),顶点坐标为(h,k),对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax的图像相同,当x=h时,y最大(小)值=k。
2、二次函数(顶点式):通过将函数解析式y=ax^2的函数图像平移可以得到二次函数的顶点式y=a(x-h)^2 k;通过顶点式可以确定抛物线的顶点坐标为(h,k)。
3、二次函数y二ax^2十bx+c配方得顶点式y=a(x一b/2a)^2十(4ac一b^2)/4a。当a>o时抛物线开口向上,顶点是图象最低点,当x二一b/2a时y最小二(4ac一b^2)/4a。当a<0时抛物线开口向下,顶点是图像的最高点,当x二一b/2a时,y最大二(4ac一b^2)/4a。
五、怎么配成顶点式 要过程
顶点式:y=a(x-h)² k(a≠0,a、h、k为常数),顶点坐标:(h,k)。另一种形式:y=a(x h)² k(a≠0),则此时顶点坐标为(-h,k)。
顶点式:y=a(x-h)² k,抛物线的顶点P(h,k)
顶点坐标:对于一般二次函数 y=ax^2 bx c其顶点坐标为(-b/2a,(4ac-b²)/4a)
抛物线y=ax²; bx c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b²;-4ac>0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax2 bx c=0
(a≠0)的两根。这两点间的距离AB=|x2-x1|。
当△=0.图象与x轴只有一个交点;
当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0。
当h>0时,y=a(x-h)²;的图象可由抛物线y=ax2向右平行移动h个单位得到,
当h<0时,则向左平行移动|h|个单位得到.
当h>0,k>0时,将抛物线y=ax²;向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)²; k的图象;
当h>0,k<0时,将抛物线y=ax²;向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²; k的图象;
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²; k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²; k的图象。
六、顶点的公式是什么
二次函数的顶点式是:y=a(x-h)^2 k(a不等0)顶点坐标是(h,k)。
x=h是图象的对称轴,交点式y=a(x-x1)(x-x2)(a不等0)顶点坐标是(x1 x2)/2,另一个把x代进去求y的值.,对称轴是x=(x1 x2)/2。
通过顶点式可以确定抛物线的顶点坐标为(h,k)。
抛物线均有顶点,因此二次函数也具有顶点,对于二次函数y=ax^2,不论其开口向上或者向下,其顶点坐标均为坐标原点(0,0);既然有顶点坐标那么气必定有最大值和最小值。当a>0时,开口向上,有最小值,在x=0处取到,即y=0;当a<0时,开口向下,有最大值,在x=0处取到,即y=0。
根据已知条件确定二次函数解析式,通常利用待定系数法。用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便,一般来说,有如下几种情况:
1、已知抛物线上三点的坐标,一般选用一般式。
2、已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式。
3、已知抛物线与轴的两个交点的横坐标,一般选用两根式。
4、已知抛物线上纵坐标相同的两点,常选用顶点式。
文章分享结束,顶点式和函数顶点式是什么的答案你都知道了吗?欢迎再次光临本站哦!