光合作用的过程 光合作用过程
来源:择校网 时间:2024-11-18 13:32:45
一、求光合作用过程图解,谢谢!
总反应:CO2 H2018——→(CH2O) O218
分反应:H20→H O2(水的光解)NADP 2e- H → NADPH(递氢)ADP→ATP(递能)CO2 C5化合物→C3化合物(二氧化碳的固定)C3化合物→(CH2O) C5化合物(有机物的生成)
1.光反应阶段光合作用第一个阶段中的化学反应,必须有光能才能进行,这个阶段叫做光反应阶段.光反应阶段的化学反应是在叶绿体内的类囊体上进行的
2.暗反应阶段光合作用第二个阶段中的化学反应,没有光能也可以进行,这个阶段叫做暗反应阶段.暗反应阶段中的化学反应是在叶绿体内的基质中进行的.光反应阶段和暗反应阶段是一个整体,在光合作用的过程中,二者是紧密联系、缺一不可的。
17世纪荷兰科学家Van Helmont进行柳树盆栽试验。证明柳树生长所需的主要物质不是来自土壤,而是来自水。
1771年英国牧师、化学家J.Priestley进行密闭钟罩试验,有植物存在蜡烛不熄灭,老鼠不会窒息死亡。1776年提出植物可以“净化”空气。1771年被称为光合作用发现年。
1782年瑞士人Jean Snebier用化学方法发现:是光合作用必需物质,是光合作用产物。
1804年瑞士人N.T.De Saussure做定量实验证实植物所产生的有机物和所放出的总量比消耗的多,证明还有水参与反应。
1864年J.V.Sachs发现照光叶片遇碘会变蓝,证明光合作用形成碳水化合物(淀粉)。
19世纪末,证明光合作用原料是空气中的和土壤中的,能源是太阳辐射能,产物是糖和。
2018年6月,美国《科学》杂志刊登的一项新研究说,蓝藻可利用近红外光进行光合作用,其机制与之前了解的光合作用不同。这一发现有望为寻找外星生命和改良作物带来新思路。新研究发现,上述蓝藻在有可见光的情况下,会正常利用“叶绿素-a”进行光合作用,但如果处在阴暗环境中,缺少可见光时,就会转为利用“叶绿素-f”,使用近红外光进行光合作用。
二、光合作用的三个阶段是什么
1、第一阶段:在类囊体薄膜上,水光解成为还原氢和氧气,ADP与Pi吸收能量结合生成ATP。
2、第二阶段:在叶绿体基质中,C₅结合CO₂生成两分子C₃。
3、第三阶段:在叶绿体基质中,ATP水解为ADP与Pi释放能量,C₃吸收能量并结合第一阶段中水生成的还原氢,生成糖类和C₅。
4、光反应阶段的特征是在光驱动下水分子氧化释放的电子通过类似于线粒体呼吸电子传递链那样的电子传递系统传递给NADP ,使它还原为NADPH。电子传递的另一结果是基质中质子被泵送到类囊体腔中,形成的跨膜质子梯度驱动ADP磷酸化生成ATP。
5、暗反应阶段是利用光反应生成NADPH和ATP进行碳的同化作用,使气体二氧化碳还原为糖。由于这阶段基本上不直接依赖于光,而只是依赖于NADPH和NADPH的提供。
6、光合作用第二个阶段中的化学反应,没有光能也可以进行,这个阶段叫做暗反应阶段。暗反应阶段中的化学反应是在叶绿体内的基质中进行的。光反应阶段和暗反应阶段是一个整体,在光合作用的过程中,二者是紧密联系、缺一不可的。
7、光合作用为包括人类在内的几乎所有生物的生存提供了物质来源和能量来源。因此,光合作用对于人类和整个生物界都具有非常重要的意义。
8、当特殊叶绿素a对(P)被光激发后成为激发态P*,放出电子给原初电子受体(A)。叶绿素a被氧化成带正电荷(P )的氧化态,而受体被还原成带负电荷的还原态(A-)。氧化态的叶绿素(P )在失去电子后又可从次级电子供体(D)得到电子而恢复电子的还原态。
9、这样不断地氧化还原,原初电子受体将高能电子释放进入电子传递链,直至最终电子受体NADP 。同样,氧化态的电子供体(D )也要想前面的供体夺取电子,一次直到最终的电子供体水。
10、参考资料来源:百度百科——光合作用
三、光合作用过程
1、光合作用的过程是一个比较复杂的问题,从表面上看,光合作用的总反应式似乎是一个简单的氧化还原过程,但实质上包括一系列的光化学步骤和物质转变问题。根据现代的资料,整个光合作用大致可分为下列3大步骤:
2、①原初反应,包括光能的吸收、传递和转换;
3、②电子传递和光合磷酸化,形成活跃化学能(ATP和NADPH);
4、③碳同化,把活跃的化学能转变为稳定的化学能(固定CO2,形成糖类)。在介绍光合作用反应过程前,对光合作用过程中涉及的光合色素及光系统进行一定的了解是必要的。
5、光合作用,通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。其主要包括光反应、暗反应两个阶段,涉及光吸收、电子传递、光合磷酸化、碳同化等重要反应步骤,对实现自然界的能量转换、维持大气的碳-氧平衡具有重要意义。
四、光合作用全过程是怎样的
总反应:CO2 H2018——→(CH2O) O218
注意:光合作用释放的氧气全部来自水,光合作用的产物不仅是糖类,还有氨基酸(无蛋白质)、脂肪,因此光合作用产物应当是有机物.
NADP 2e- H → NADPH(递氢)
CO2 C5化合物→C3化合物(二氧化碳的固定)
C3化合物→(CH2O) C5化合物(有机物的生成)
光合作用的过程:1.光反应阶段光合作用第一个阶段中的化学反应,必须有光能才能进行,这个阶段叫做光反应阶段.光反应阶段的化学反应是在叶绿体内的类囊体上进行的.暗反应阶段光合作用第二个阶段中的化学反应,没有光能也可以进行,这个阶段叫做暗反应阶段.暗反应阶段中的化学反应是在叶绿体内的基质中进行的.光反应阶段和暗反应阶段是一个整体,在光合作用的过程中,二者是紧密联系、缺一不可的.
光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧的过程.我们每时每刻都在吸入光合作用释放的氧.我们每天吃的食物,也都直接或间接地来自光合作用制造的有机物.那么,光合作用是怎样发现的呢?
光合作用的发现直到18世纪中期,人们一直以为植物体内的全部营养物质,都是从土壤中获得的,并不认为植物体能够从空气中得到什么.1771年,英国科学家普利斯特利发现,将点燃的蜡烛与绿色植物一起放在一个密闭的玻璃罩内,蜡烛不容易熄灭;将小鼠与绿色植物一起放在玻璃罩内,小鼠也不容易窒息而死.因此,他指出植物可以更新空气.但是,他并不知道植物更新了空气中的哪种成分,也没有发现光在这个过程中所起的关键作用.后来,经过许多科学家的实验,才逐渐发现光合作用的场所、条件、原料和产物.下面介绍其中几个著名的实验.1864年,德国科学家萨克斯做了这样一个实验:把绿色叶片放在暗处几小时,目的是让叶片中的营养物质消耗掉.然后把这个叶片一半曝光,另一半遮光.过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色.这一实验成功地证明了绿色叶片在光合作用中产生了淀粉.
1880年,德国科学家恩吉尔曼用水绵进行了光合作用的实验:把载有水绵和好氧细菌的临时装片放在没有空气并且是黑暗的环境里,然后用极细的光束照射水绵.通过显微镜观察发现,好氧细菌只集中在叶绿体被光束照射到的部位附近;如果上述临时装片完全暴露在光下,好氧细菌则集中在叶绿体所有受光部位的周围.恩吉尔曼的实验证明:氧是由叶绿体释放出来的,叶绿体是绿色植物进行光合作用的场所.
光反应阶段光合作用第一个阶段中的化学反应,必须有光能才能进行,这个阶段叫做光反应阶段.光反应阶段的化学反应是在叶绿体内的类囊体上进行的.
暗反应阶段光合作用第二个阶段中的化学反应,没有光能也可以进行,这个阶段叫做暗反应阶段.暗反应阶段中的化学反应是在叶绿体内的基质中进行的.光反应阶段和暗反应阶段是一个整体,在光合作用的过程中,二者是紧密联系、缺一不可的.
光合作用的重要意义光合作用为包括人类在内的几乎所有生物的生存提供了物质来源和能量来源.因此,光合作用对于人类和整个生物界都具有非常重要的意义.光合作用的意义可以概括为以下几个方面;
第一,制造有机物.绿色植物通过光合作用制造有机物的数量是非常巨大的.据估计,地球上的绿色植物每年大约制造四五千亿吨有机物,这远远超过了地球上每年工业产品的总产量.所以,人们把地球上的绿色植物比作庞大的“绿色工厂”.绿色植物的生存离不开自身通过光合作用制造的有机物.人类和动物的食物也都直接或间接地来自光合作用制造的有机物.
第二,转化并储存太阳能.绿色植物通过光合作用将太阳能转化成化学能,并储存在光合作用制造的有机物中.地球上几乎所有的生物,都是直接或间接利用这些能量作为生命活动的能源的.煤炭、石油、天然气等燃料中所含有的能量,归根到底都是古代的绿色植物通过光合作用储存起来的.
第三,使大气中的氧和二氧化碳的含量相对稳定.据估计,全世界所有生物通过呼吸作用消耗的氧和燃烧各种燃料所消耗的氧,平均为10000 t/s(吨每秒).以这样的消耗氧的速度计算,大气中的氧大约只需二千年就会用完.然而,这种情况并没有发生.这是因为绿色植物广泛地分布在地球上,不断地通过光合作用吸收二氧化碳和释放氧,从而使大气中的氧和二氧化碳的含量保持着相对的稳定.
第四,对生物的进化具有重要的作用.在绿色植物出现以前,地球的大气中并没有氧.只是在距今20亿至30亿年以前,绿色植物在地球上出现并逐渐占有优势以后,地球的大气中才逐渐含有氧,从而使地球上其他进行有氧呼吸的生物得以发生和发展.由于大气中的一部分氧转化成臭氧(O3).臭氧在大气上层形成的臭氧层,能够有效地滤去太阳辐射中对生物具有强烈破坏作用的紫外线,从而使水生生物开始逐渐能够在陆地上生活.经过长期的生物进化过程,最后才出现广泛分布在自然界的各种动植物.
五、光合作用的三个阶段
1、第一阶段:在类囊体薄膜上,水光解成为还原氢和氧气,ADP与Pi吸收能量结合生成ATP。
2、第二阶段:在叶绿体基质中,C₅结合CO₂生成两分子C₃。
3、第三阶段:在叶绿体基质中,ATP水解为ADP与Pi释放能量,C₃吸收能量并结合第一阶段中水生成的还原氢,生成糖类和C₅。
4、光反应阶段的特征是在光驱动下水分子氧化释放的电子通过类似于线粒体呼吸电子传递链那样的电子传递系统传递给NADP ,使它还原为NADPH。电子传递的另一结果是基质中质子被泵送到类囊体腔中,形成的跨膜质子梯度驱动ADP磷酸化生成ATP。
5、暗反应阶段是利用光反应生成NADPH和ATP进行碳的同化作用,使气体二氧化碳还原为糖。由于这阶段基本上不直接依赖于光,而只是依赖于NADPH和NADPH的提供。
6、光合作用第二个阶段中的化学反应,没有光能也可以进行,这个阶段叫做暗反应阶段。暗反应阶段中的化学反应是在叶绿体内的基质中进行的。光反应阶段和暗反应阶段是一个整体,在光合作用的过程中,二者是紧密联系、缺一不可的。
7、光合作用为包括人类在内的几乎所有生物的生存提供了物质来源和能量来源。因此,光合作用对于人类和整个生物界都具有非常重要的意义。
8、当特殊叶绿素a对(P)被光激发后成为激发态P*,放出电子给原初电子受体(A)。叶绿素a被氧化成带正电荷(P )的氧化态,而受体被还原成带负电荷的还原态(A-)。氧化态的叶绿素(P )在失去电子后又可从次级电子供体(D)得到电子而恢复电子的还原态。
9、这样不断地氧化还原,原初电子受体将高能电子释放进入电子传递链,直至最终电子受体NADP 。同样,氧化态的电子供体(D )也要想前面的供体夺取电子,一次直到最终的电子供体水。
10、参考资料来源:百度百科——光合作用
END,本文到此结束,如果可以帮助到大家,还望关注本站哦!