求导 24个基本求导公式
来源:择校网 时间:2024-12-24 10:34:45
一、函数求导公式是什么
1、求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。
2、在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。
3、如果一个函数的定义域为全体实数,即函数在实数域上都有定义。函数在定义域中一点可导需要一定的条件。
4、首先,要使函数f在一点可导,那么函数一定要在这一点处连续。换言之,函数若在某点可导,则必然在该点处连续。可导的函数一定连续,不连续的函数一定不可导。
二、求导方法总结全部
从导数与微分的关系可知,会求导数,就一定会求微分。
y=f(x),dy=f'(x)dx,dy/dx=f'(x)。
导数的计算方法一般以下分为8种情形:
1.公式法:这个方法需要熟练掌握导数的基本公式。
2.导数四则运算公式:导数的乘法和除法公式要能熟练运用。
3.复合函数的链式法则--非常重要的求导方法。
链式法则在应用时一般分成4步:分解-各自求导-相乘-回代。
如果计算熟练,可以不设中间变量,直接求复合函数的导数。
利用这种方法求导时,要注意:先取反函数,然后对反函数 siny求导,特别注意此时y是自变量,所以 siny的导数是 cosy。
一般两种情况会使用对数求导法,这两种情况都是对等式两端同时取自然对数,利用对数的运算性质对函数进行变形。
6.隐函数求导法:隐函数是隐藏在一个方程中的函数,要用到链式法则。
7.参数方程求导法:注意参数方程求导公式。
下面这个例子是一个求高阶导数的经典例题。一般求二阶导数要多练习求隐函数和参数方程的二阶导数。
三、求导公式运算法则
1、运算法则是:加(减)法则,[f(x) g(x)]'=f(x)' g(x)';乘法法则,[f(x)*g(x)]'=f(x)'*g(x) g(x)'*f(x);除法法则,[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。
2、导数也叫导函数值,又名微商,是微积分中的重要基础概念。由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。
3、求导运算法则是:加(减)法则:[f(x) g(x)]'=f(x)' g(x)';乘法法则:[f(x)*g(x)]'=f(x)'*g(x) g(x)'*f(x);除法法则:[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2。
4、不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
四、24个基本求导公式
2、(xAn)'=nxA(n——1)。
7、(logaX)'=1/(xlna)。
9、(u±V)'=u'±V'。
10、(uv)'=u'v uv'。
11、(u/v)'=(u'v——uv')/v。
12、 f(g(x))'=(f(u))'(g(x))'u=g(x)。
如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,记为f'(x)。如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间【a,b】上可导,f'(x)为区间【a,b】上的导函数,简称导数。
条件:如果一个函数的定义域为全体实数,即函数在上都有定义,那么该函数是在定义域上处处可导是否定的。函数在定义域中一点可导需要一定的条件是:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在它的左右极限存在且相等)推导而来。
五、基本求导公式18个
24个基本求导公式可以分成三类。
第一类是导数的定义公式,即差商的极限。
再用这个公式推出17个基本初等函数的求导公式,这就是第二类。
最后一类是导数的四则运算法则和复合函数的导数法则以及反函数的导数法则,利用这些公式就可以推出所有可导的初等函数的导数。
1、f'(x)=lim(h->0)[(f(x h)-f(x))/h].即函数差与自变量差的商在自变量差趋于0时的极限,就是导数的定义。兄敏其它所有基本求导公式都是由这个公式引出来的。包括幂函数、指数函数、对数函数、三角函数和反三角函数。
2、f(x)=a的导数,f'(x)=0,a为常数.即常数的导数等于0;这个导数其实是一个塌宽特殊的幂函数的导数。就是当幂函羡衫枝数的指数等于1的时候的导数。
可以根据幂函数的求导公式求得。
3、f(x)=x^n的导数,f'(x)=nx^(n-1),n为正整数.即系数为1的单项式的导数,以指数为系数,指数减1为指数.这是幂函数的指数为正整数的求导公式。
六、如何求导
1、(1)求函数y=f(x)在x0处导数的步骤:
2、①求函数的增量Δy=f(x0 Δx)-f(x0)
3、⑥(a^x)'=a^xIna(ln为自然对数)
4、③(u/v)'=(u'v-uv')/ v^2
5、④[u(v)]'=[u'(v)]*v'(u(v)为复合函数f[g(x)])
6、(4)复合函数的导数:复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。
7、求导是微积分的基础,同时也是微积分计算的一个重要的支柱。物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。
8、数学中的名词,即对函数进行求导,用表示。
9、若函数严格单调且可导,则其反函数的导数存在且。
10、若在点x可导在相应的点u也可导,则其复合函数在点x可导且。
11、若中存在隐函数,这里仅是说y为一个x的函数并非说y一定被反解出来为显式表达。即,尽管y未反解出来,只要y关于x的隐函数存在且可导,我们利用复合函数求导法则则仍可以求出其反函数。
文章分享结束,求导和24个基本求导公式的答案你都知道了吗?欢迎再次光临本站哦!