有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。
有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。
三、什么不是有理数
1、在实数范围内,有理数包括整数和分数,即:正整数、零、负整数和正分数、负分数。
2、不包括:无限不循环小数,即:无理数。
3、有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
4、整数,是序列{...,-3,-2,-1,0,1,2,3,...}中所有的数的统称,包括负整数、零(0)与正整数。和自然数一样,整数也是一个可数的无限集合。这个集合在数学上通常表示为粗体Z或,源于德语单词Zahlen(意为“数”)的首字母。
5、在代数数论中,这些属于有理数的一般整数会被称为有理整数,用以和高斯整数等的概念加以区分。
四、有理数包括0吗 有理数包不包括0
1、有理数包不包括0:有理数包括0.有理数有:整数(正整数,负整数,0)分数(正分数,负分数)无理数:无限不循环小数。
2、有理数是:整数(包括0,正负整数),有限小数(如0.5),无限循环小数(如1/3),无理数是无限不循环小数(如圆周率和根号2)。
⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)。
⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
五、有限循环小数和有限不循环小数是有理数还是无理数
1、循环小数没有有限的说法,只要说循环小数都是无限的。所有有限小数都是有理数;无限小数中,无限循环小数是有理数,无限不循环小数是无理数。
2、小数分有限小数和无限小数。无限小数分为无限循环小数和无限不循环小数。有限小数即使出现循环,也不能叫有限循环小数。也就是说,循环小数一定是无限小数。
3、循环小数是指从小数点后某一位开始有限地重复出现前一个或一节数码的十进制无限小数。无限循环小数都可以转化为分母为的分数,因此无限循环小数属于有理数。无限不循环小数属于无理数。
4、常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。
5、有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
6、有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。
7、有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。
六、什么是有理数
有理数指整数可以看作分母为1的分数。正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。有理数的小数部分是有限或循环小数。不是有理数的实数遂称为无理数。
整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。
关于是不是有理数,什么不是有理数的介绍到此结束,希望对大家有所帮助。
标签:两个 它们 假设