好职校,职校招生和学历提升信息网。

分站导航

热点关注

择校网在线报名

在线咨询

8:00-22:00

当前位置:

择校网

>

职校资讯

>

招生百科

初二数学压轴题100题(初中一年级数学试题及答案解析)

来源:择校网   时间:2024-01-29 21:46:45

一、初三数学试题及答案

2009年广州市初中毕业生学业考试

一、选择题(本大题共10小题,每小题3分,满分30分。在每小题给出的四个选项中,只有一项是符合题目要求的。)

1.将图1所示的图案通过平移后可以得到的图案是( A)

2.如图2,AB‖CD,直线分别与AB、CD相交,若∠1=130°,则∠2=( C)

(A)40°(B)50°(C)130°(D)140°

3.实数、在数轴上的位置如图3所示,则与的大小关系是( C)

5.图4是广州市某一天内的气温变化图,根据图4,下列说法中错误的是( D)

(B)这一天中最高气温与最低气温的差为16℃

(C)这一天中2时至14时之间的气温在逐渐升高

(D)这一天中只有14时至24时之间的气温在逐渐降低

7.下列函数中,自变量的取值范围是≥3的是( D)

8.只用下列正多边形地砖中的一种,能够铺满地面的是( C)

9.已知圆锥的底面半径为5cm,侧面积为65πcm2,设圆锥的母线与高的夹角为θ(如图5)所示),则sinθ的值为( B)

10.如图6,在 ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则ΔCEF的周长为( A)

(A)8(B)9.5(C)10(D)11.5

二、填空题(本大题共6小题,每小题3分,满分18分)

11.已知函数,当=1时,的值是________2

12.在某校举行的艺术节的文艺演出比赛中,九位评委给其中一个表演节目现场打出的分数如下:9.3,8.9,9.3,9.1,8.9,8.8,9.3,9.5,9.3,则这组数据的众数是________9.3

13.绝对值是6的数是________ 6,-6

14.已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题:________________________________略

15.如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第个“广”字中的棋子个数是________2n 5

16.如图8是由一些相同长方体的积木块搭成的几何体的三视图,则此几何体共由________块长方体的积木搭成4

三、解答题(本大题共9小题,满分102分。解答应写出文字说明、证明过程或演算步骤)

如图9,在ΔABC中,D、E、F分别为边AB、BC、CA的中点。

证明:四边形DECF是平行四边形。

如图10,在⊙O中,∠ACB=∠BDC=60°,AC=,

(1)求∠BAC的度数;(2)求⊙O的周长

有红、白、蓝三种颜色的小球各一个,它们除颜色外没有其它任何区别。现将3个小球放入编号为①、②、③的三个盒子里,规定每个盒子里放一个,且只能放一个小球。

(1)请用树状图或其它适当的形式列举出3个小球放入盒子的所有可能情况;

(2)求红球恰好被放入②号盒子的概率。

如图11,在方格纸上建立平面直角坐标系,线段AB的两个端点都在格点上,直线MN经过坐标原点,且点M的坐标是(1,2)。

(2)求直线MN所对应的函数关系式;

(3)利用尺规作出线段AB关于直线MN的对称图形(保留作图痕迹,不写作法)。

为了拉动内需,广东启动“家电下乡”活动。某家电公司销售给农户的Ⅰ型冰箱和Ⅱ型冰箱在启动活动前一个月共售出960台,启动活动后的第一个月销售给农户的Ⅰ型和Ⅱ型冰箱的销量分别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售出1228台。

(1)在启动活动前的一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为多少台?

(2)若Ⅰ型冰箱每台价格是2298元,Ⅱ型冰箱每台价格是1999元,根据“家电下乡”的有关政策,政府按每台冰箱价格的13%给购买冰箱的农户补贴,问:启动活动后的第一个月销售给农户的1228台Ⅰ型冰箱和Ⅱ型冰箱,政府共补贴了多少元(结果保留2个有效数字)?

如图12,边长为1的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P。

(2)若∠FAH=45°,证明:AG AE=FH;

(3)若RtΔGBF的周长为1,求矩形EPHD的面积。

解:(1)易证ΔABF≌ΔADH,所以AF=AH

(2)如图,将ΔADH绕点A顺时针旋转90度,如图,易证ΔAFH≌ΔAFM,得FH=MB BF,即:FH=AG AE

(3)设PE=x,PH=y,易得BG=1-x,BF=1-y,FG=x y-1,由勾股定理,得

如图13,二次函数的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ΔABC的面积为。

(2)过y轴上的一点M(0,m)作y轴上午垂线,若该垂线与ΔABC的外接圆有公共点,求m的取值范围;

(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。

解:(1)OC=1,所以,q=-1,又由面积知0.5OC×AB=,得AB=

AB=b-a==,解得p=,但p<0,所以p=。

(2)令y=0,解方程得,得,所以A(,0),B(2,0),在直角三角形AOC中可求得AC=,同样可求得BC=,,显然AC2 BC2=AB2,得三角形ABC是直角三角形。AB为斜边,所以外接圆的直径为AB=,所以.

(3)存在,AC⊥BC,①若以AC为底边,则BD//AC,易求AC的解析式为y=-2x-1,可设BD的解析式为y=-2x b,把B(2,0)代入得BD解析式为y=-2x 4,解方程组得D(,9)

②若以BC为底边,则BC//AD,易求BC的解析式为y=0.5x-1,可设AD的解析式为y=0.5x b,把 A(,0)代入得AD解析式为y=0.5x 0.25,解方程组得D()

综上,所以存在两点:(,9)或()。

2009年广州市初中毕业生学业考试

一、选择题:本题考查基础知识和基本运算,每小题3分,满分30分.

二、填空题:本题考查基础知识和基本运算,每小题3分,满分18分.

14.如果一个平行四边形是菱形,那么这个平行四边形的两条对角线互相垂直

三、解答题:本大题考查基础知识和基本运算,及数学能力,满分102分.

17.本小题主要考查平行四边形的判定、中位线等基础知识,考查几何推理能力和空间观念.满分9分.

18.本小题主要考查分式方程等基本运算技能,考查基本的代数计算能力.满分9分.

19.本小题主要考查整式的运算、平方差公式等基础知识,考查基本的代数计算能力.满分10分.

20.本小题主要考查圆、等边三角形等基础知识,考查计算能力、推理能力和空间观念.满分10分.

方法1:连结并延长交于点(如图1).

∴圆心既是的外心又是重心,还是垂心.

方法2:连结、,作交于点(如图2).

方法3:连结、,作交于点(如图2).

是等边三角形的外心,也是的角平分线的交点,

方法4:连结、,作交于点(如图2).

是等边三角形的外心,也是的角平分线的交点,

21.本小题主要考查概率等基本的概念,考查.满分12分.

解法2:3个小球分别放入编号为①、②、③的三个盒子的所有可能情况为:红白蓝、红蓝白、白红蓝、白蓝红、蓝红白、蓝白红共6种.

(2)解:从(1)可知,红球恰好放入2号盒子的可能结果有白红蓝、蓝红白共2种,

所以红球恰好放入2号盒子的概率.

22.本小题主要考查图形的坐标、轴对称图形、尺规作图、一次函数等基础知识,考查用待定系数法求函数解析式的基本方法,以及从平面直角坐标系中读图获取有效信息的能力,满分12分.

(2)解法1:∵直线经过坐标原点,

(3)利用直尺和圆规,作线段关于直线的对

23.本小题主要考查建立二元一次方程组模型解决简单实际问题的能力,考查基本的代数计算推理能力.满分12分.

解:(1)设启动活动前的一个月销售给农户的I型冰箱和II型冰箱分别为、台.

∴启动活动前的一个月销售给农户的I型冰箱和II型冰箱分别为560台和400台.

(2)I型冰箱政府补贴金额:元,

∴启动活动后第一个月两种型号的冰箱政府一共补贴金额:

答:启动活动后第一个月两种型号的冰箱政府一共约补贴农户元.

24.本小题主要考查正方形、矩形、三角形全等等基础知识,考查计算能力、推理能力和空间观念.满分14分.

(2)证明1:将绕点顺时针旋转到的位置.

求矩形的面积给出以下两种方法:

25.本小题主要考查二次函数、解直角三角形等基础知识,考查运算能力、推理能力和空间观念.满分14分.

∴的外接圆的圆心是斜边的中点.

(3)假设在二次函数的图象上存在点,使得四边形是直角梯形.

而,因此当时在抛物线上存在点,使得四边形是直角梯形.

过作轴,垂足为,如图2所示,………5分

此时,因此当时,在抛物线上存在点,使得四边形是直角梯形.

综上所述,在抛物线上存在点,使得四边形是直角梯形,并且点的坐标为或.

二、求人教版初中数学课后习题及答案

我为楼主找到了一个可以去下载初中数学答案的网址,是人教版,楼主可以亲自去下载地址 ://.jysls/down-308613-529811.html

不过楼主也可以去买相关的教材同步书籍,那上面是有课后习题答案的!希望楼主早日找到自己满意的答案,高二学生为您真诚解答,希望您能采纳,纯手工查找,打字!

三、初中一年级数学试题及答案解析

一.仔细选一选(本题有10个小题,每小题3分,共30分)每小题给出的四个选项中,只有一个是正确的,注意可以用多种不同的方法来选取正确答案.

1.下列四个数中,结果为负数的是()

A.﹣(﹣)B.|﹣|C.(﹣)2D.﹣|﹣|

分析:根据相反数,可判断A,根据负数的绝对值,可判断B,根据负数的偶次幂是正数,可判断C,根据绝对值的相反数,可判断D.

解答:解:A、﹣(﹣)=>0,故A错误;

点评:本题考查了正数和负数,小于零的数是负数,先化简再判断负数.

A.B.=﹣2C.D.(﹣2)3×(﹣3)2=72

分析:A、根据算术平方根的定义即可判定;

B、根据立方根的定义即可判定;

C、根据立方根的定义即可判定;

D、根据乘方运算法则计算即可判定.

解答:解:A、=3,故选项A错误;

D、(﹣2)3×(﹣3)2=﹣8×9=﹣72,故选项D错误.

点评:本题主要考查实数的运算能力,解决此类题目的关键是熟记二次根式、三次根式和立方、平方的运算法则.开平方和开立方分别和平方和立方互为逆运算.立方根的性质:任何数都有立方根,①正数的立方根是正数,②负数的立方根是负数,③0的立方根是0.

3.用代数式表示:“a,b两数的平方和与a,b乘积的差”,正确的是()

A.a2 b2﹣abB.(a b)2﹣abC.a2b2﹣abD.(a2 b2)ab

分析:先求得a,b两数的平方和为a2 b2,再减去a,b乘积列式得出答案即可.

解答:解:“a,b两数的平方和与a,b乘积的差”,列示为a2 b2﹣ab.

点评:此题考查列代数式,找出题目蕴含的数量关系是解决问题的关键.

4.据统计,2013年我国用义务教育经费支持了13940000名农民工随迁子女在城市里接受义务教育,这个数字用科学计数法可表示为()

A.1.394×107B.13.94×107C.1.394×106D.13.94×105

考点:科学记数法—表示较大的数.

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.

解答:解:13940000=1.394×107,

点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

5.若﹣2am﹣1b2与5abn可以合并成一项,则m n的值是()

分析:根据可以合并,可得同类项,根据同类项是字母相同且相同字母的指数也相同,可得m、n的值,根据有理数的加法,可得答案.

解答:解:由﹣2am﹣1b2与5abn可以合并成一项,得

点评:本题考查了合并同类项,利用了同类项得出m、n的值是解题关键.

6.如图,A是直线l外一点,点B、C、E、D在直线l上,且AD⊥l,D为垂足,如果量得AC=8cm,AD=6cm,AE=7cm,AB=13cm,那么,点A到直线l的距离是()

分析:根据点到直线的距离是点与直线上垂足间线段的长,可得答案.

解答:解:点A到直线l的距离是AD的长,故点A到直线l的距离是6cm,

点评:本题考查了点到直线的距离,点到直线的距离是点与直线上垂足间线段的长.

A.﹣(a﹣1)=﹣a﹣1B.3a﹣5a=﹣2aC.2(a b)=2a bD.|π﹣3|=3﹣π

考点:合并同类项;绝对值;去括号与添括号.

分析:根据去括号与添括号的法则以及合并同类项的定义对各选项依次进行判断即可解答.

解答:解:A、﹣(a﹣1)=﹣a 1,故本选项错误;

B、3a﹣5a=﹣2a,故本选项正确;

C、2(a b)=2a 2b,故本选项错误;

D、|π﹣3|=π﹣3,故本选项错误.

点评:本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是” “,去括号后,括号里的各项都不改变符号;括号前是”﹣“,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.同时要注意掌握合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.

8.若有理数m在数轴上对应的点为M,且满足m<1<﹣m,则下列数轴表示正确的是()

考点:数轴;相反数;有理数大小比较.

分析:根据m<1<﹣m,求出m的取值范围,进而确定M的位置即可.

点评:此题主要考查了不等式组的解法以及利用数轴确定点的位置,根据已知得出m的取值范围是解题关键.

9.下列说法:①两点确定一条直线;②射线AB和射线BA是同一条射线;③相等的角是对顶角;④三角形任意两边和大于第三边的理由是两点之间线段最短.正确的是()

A.①③④B.①②④C.①④D.②③④

考点:三角形三边关系;直线、射线、线段;直线的性质:两点确定一条直线;对顶角、邻补角.

分析:利用确定直线的条件、射线的定义、对顶角的性质、三角形的三边关系分别判断后即可确定正确的选项.

解答:解:①两点确定一条直线,正确;

②射线AB和射线BA是同一条射线,错误;

④三角形任意两边和大于第三边的理由是两点之间线段最短,正确,

点评:本题考查了确定直线的条件、射线的定义、对顶角的性质、三角形的三边关系,属于基础知识,比较简单.

10.已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,点M是线段AC的中点,则线段AM的长为()

A.2cmB.4cmC.2cm或6cmD.4cm或6cm

分析:分类讨论:点C在线段AB上,点C在线段BC的延长线上,根据线段的和差,可得AC的长,根据线段中点的性质,可得AM的长.

解答:解:当点C在线段AB上时,由线段的和差,得AC=AB﹣BC=8﹣4=4(cm),

由线段中点的性质,得AM=AC=×4=2(cm);

点C在线段BC的延长线上,由线段的和差,得AC=AB BC=8 4=12(cm),

由线段中点的性质,得AM=AC=×12=6(cm);

点评:本题考查了两点间的距离,利用了线段的和差,线段中点的性质.

二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案.

11.若∠1=40°50′,则∠1的余角为49°10′,∠1的补角为139°10′.

考点:余角和补角;度分秒的换算.

分析:根据余角的定义求出90°﹣∠1°,即可得出答案,根据补角的定义求出180°﹣∠1,即可得出答案.

∴∠1的余角为90°﹣∠1=49°10′,

∠1的补角为180°﹣∠1=139°10′,

故答案为:49°10′,139°10′.

点评:本题考查了余角和补角的应用,注意:∠1是的余角是90°﹣∠1,补角是180°﹣∠1.

12.在实数,,0,,,﹣1.414,0.131131113…(两个“3”之间依次多一个“1”),﹣中,其中无理数是,,0.131131113…(两个“3”之间依次多一个“1”).

分析:无理数是指无限不循环小数,根据无理数的定义判断即可.

解答:解:无理数有,,0.131131113…(两个“3”之间依次多一个“1”),

故答案为:,,0.131131113…(两个“3”之间依次多一个“1”).

点评:本题考查了对无理数的定义的应用,注意:无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数.

13.关于x的方程3x 2a=6的解是a﹣1,则a的值是.

分析:把x=a﹣1代入方程计算即可求出a的值.

解答:解:把x=a﹣1代入方程得:3a﹣3 2a=6,

点评:此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.

14.如果a﹣3b=6,那么代数式5﹣3a 9b的值是﹣13.

分析:将原式提取公因式,进而将已知代入求出即可.

∴5﹣3a 9b=5﹣3(a﹣3b)=5﹣3×6=﹣13.

点评:此题主要考查了代数式求值,正确应用已知得出是解题关键.

15.若当x=3时,代数式(3x 4 m)与2﹣mx的值相等,则m=﹣.

分析:把x=3代入两代数式,使其值相等求出m的值即可.

解答:解:把x=3代入得:(13 m)=2﹣m,

点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.

16.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m为29,第n个正方形的中间数字为8n﹣3.(用含n的代数式表示)

分析:由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一规律即可求出m的值;

首先求得第n个的最小数为1 4(n﹣1)=4n﹣3,其它三个分别为4n﹣2,4n﹣1,4n,由以上规律求得答案即可.

因此第4个正方形中间数字m为14 15=29,

第n个正方形的中间数字为4n﹣2 4n﹣1=8n﹣3.

点评:此题考查图形的变化规律,通过观察,分析、归纳发现数字之间的运算规律,并应用发现的规律解决问题.

三.全面答一答(本题有7个小题,共66分)解答应写出必要的文字说明、证明过程或推理步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.

(1)(﹣2.25)﹣( ) (﹣)﹣(﹣0.125)

(2)﹣32 5×(﹣6)﹣(﹣4)2÷(﹣2)

分析:(1)原式利用减法法则变形,计算即可得到结果;

(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.

解答:解:(1)原式=(﹣2.25﹣0.75) (﹣0.625 0.125)=﹣3﹣0.5=﹣3.5;

点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.

分析:(1)方程移项合并,把x系数化为1,即可求出解;

(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.

解答:解:(1)方程移项合并得:x=2﹣;

(2)去分母得:4x 2=1﹣2x﹣12,

点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.

19.如图,O在直线AC上,OD是∠AOB的平分线,OE在∠BOC内.

(1)若OE是∠BOC的平分线,则有OD⊥OE,试说明理由;

(2)若∠BOE=∠EOC,∠DOE=72°,求∠EOC的度数.

分析:(1)根据角平分线的定义可以求得∠DOE=∠AOC=90°;

(2)设∠EOB=x度,∠EOC=2x度,把角用未知数表示出来,建立x的方程,用代数方法解几何问题是一种常用的方法.

解答:解:(1)如图,∵OD是∠AOB的平分线,OE是∠BOC的平分线,

∴∠DOE=(∠AOB ∠BOC)=∠AOC=90°,即OD⊥OE;

点评:本题考查了角平分线的定义.设未知数,把角用未知数表示出来,列方程组,求解.角平分线的运用,为解此题起了一个过渡的作用.

20.在同一平面内有n条直线,当n=1时,如图①,一条直线将一个平面分成两个部分;当n=2时,如图②,两条直线将一个平面最多分成四个部分.

(1)在作图区分别画出当n=3时,三条直线将一个平面分成最少部分和最多部分的情况;

(2)当n=4时,请写出四条直线将一个平面分成最少部分的个数和最多部分的个数;

(3)若n条直线将一个平面最多分成an个部分,(n 1)条直线将一个平面最多分成an 1个部分,请写出an,an 1,n之间的关系式.

分析:(1)一条直线可以把平面分成两部分,两条直线最多可以把平面分成4部分,三条直线最少可以把平面分成4部分,最多可以把平面分成7部分,由此画出图形即可;

(2)四条直线最少可以把平面分成5部分,最多可以把平面分成11部分;

(3)可以发现,两条直线时多了2部分,三条直线比原来多了3部分,四条直线时比原来多了4部分,…,n条时比原来多了n部分..

(2)四条直线最少可以把平面分成5部分,最多可以把平面分成11部分;

可以发现,有几条线段,则分成的部分比前一种情况多几部分,

an、an 1、n之间的关系是:an 1=an (n 1).

点评:此题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题.

21.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东500m处,商场在学校西300m处,医院在学校东600m处.若将马路近似地看作一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m.

(1)请画一条数轴并在数轴上表示出四家公共场所的位置;

(2)列式计算青少年宫与商场之间的距离;

(3)若小新家也位于这条马路旁,在青少年宫的西边,且到商场与青少年宫的距离之和等于到医院的距离,试求小新家与学校的距离.

分析:(1)规定向东为正,单位长度是以100米为1个单位,根据青少年宫、学校、商场、医院的位置画出数轴即可,

初二数学压轴题100题(初中一年级数学试题及答案解析)

(2)根据数轴上两点之间的距离是表示这两点的数的差的绝对值求值即可.

(3)由题意可得小新家到医院的距离为800m,设小新家在数轴上为xm,列出方程求出x,即可确定小新家与学校的距离.

(2)青少年宫与商场之间的距离|500﹣(﹣300)|=800m,

(3)①∵小新家在青少年宫的西边,且到商场与青少年宫的距离之和等于到医院的距离,

设小新家在数轴上为xm,则600﹣x=800,解得x=﹣200m,

②当小新家在商场的西边时,设小新家在数轴上为xm,则﹣300﹣x 500﹣x=600﹣x,解得x=﹣400m

点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.

22.图1为全体奇数排成的数表,用十字框任意框出5个数,记框内中间这个数为a(如图2).

(1)请用含a的代数式表示框内的其余4个数;

(2)框内的5个数之和能等于2015,2020吗?若不能,请说明理由;若能,请求出这5个数中最小的一个数,并写出最小的这个数在图1数表中的位置.(自上往下第几行,自左往右的第几个)

分析:(1)上下相邻的数相差18,左右相邻的数相差是2,所以可用a表示;

(2)根据等量关系:框内的5个数之和能等于2015,2020,分别列方程分析求解.

解答:解:(1)设中间的数是a,则a的上一个数为a﹣18,下一个数为a 18,前一个数为a﹣2,后一个数为a 2;

这5个数中最小的一个数是a﹣18=403﹣18=385,

最小的这个数在图1数表中的位置第22排第4列.

即十字框中的五数之和不能等于2020,能等于2015.

点评:本题考查一元一次方程的应用,关键是看到表格中中间位置的数和四周数的关系,最后可列出方程求解.

23.某超市在“元旦”促销期间规定:超市内所有商品按标价的75%出售,同时当顾客在消费满一定金额后,按如下方案获得相应金额的奖券:

消费金额a(元)的范围100≤a<400400≤a<600600≤a<800

根据上述促销方法知道,顾客在超市内购物可以获得双重优惠,即顾客在超市内购物获得的优惠额=商品的折扣 相应的奖券金额,例如:购买标价为440元的商品,则消费金额为:440×75%=330元,获得的优惠额为:440×(l﹣75%) 40=150元.

(1)购买一件标价为800元的商品,求获得的优惠额;

(2)若购买一件商品的消费金额在450≤a<800之间,请用含a的代数式表示优惠额;

(3)对于标价在600元与900元之间(含600元和900元)的商品,顾客购买标价为多少元的商品时可以得到的优惠率?(设购买该商品得到的优惠率=购买商品获得的优惠额÷商品的标价)

分析:(1)先求出标价为450元的商品按80%的价格出售,消费金额为360元,再根据消费金额360元在200≤x≤400之间,即可得出优惠额;

(2)分两种情况:当400<a≤600时;当600≤a<800时;讨论可求该顾客获得的优惠额;

(3)设购买标价为x元时,可以得到的优惠率,根据(2)的计算方法列出方程解答即可.

解答:解:(1)优惠额为800×(l﹣75%) 130=330元;

(2)消费金额在400<a≤600之间时,优惠额为(a÷70%)(1﹣75%) 100=a 100;

消费金额在600≤a<800之间时,优惠额为(a÷70%)(1﹣75%) 130=a 130;

(3)设购买标价为x元时,由题意得

解得:x=832或x=(不合题意,舍去)

答:购买标价为832元的商品时可以得到的优惠率.

点评:此题考查一元一次方程的实际运用,列代数式,理解题意,找出运算的方法是解决问题的关键.

文章到此结束,如果本次分享的初二数学压轴题100题和初中一年级数学试题及答案解析的问题解决了您的问题,那么我们由衷的感到高兴!

标签:      

2024年招生 在线咨询
本站覆盖全国各省市中高职专本科院校及计划外招生院校,汇总各校招生要求及专业信息,如您今年尚未被任何院校录取,请自愿填写下表,我们将在全国范围内筛选适合您就读的大学,安排招生老师与您沟通。即刻报名,圆大学梦!
*

学生姓名

*

手机号码

*

户籍地址

*

当前学历

 

意向专业

立即提交 《隐私保障》

分享:

qq好友分享 QQ空间分享 新浪微博分享 微信分享 更多分享方式
(c)2024 www.chinazhenyi.com All Rights Reserved SiteMap 联系我们 | 陕ICP备2023010308号-3