好职校,职校招生和学历提升信息网。

分站导航

热点关注

择校网在线报名

在线咨询

8:00-22:00

当前位置:

择校网

>

职校资讯

>

招生百科

spss数据分析报告 spss数据分析报告的结论怎么写

来源:择校网   时间:2024-11-25 19:23:31

一、spss数据分析报告的结论怎么写

数据处理是一个非常重要的环节,第一次分析的人很容易忽略这部分。

在数据收集完成后可以使用SPSSAU无效样本和异常值两个功能对数据无效性进行处理。

无效样本:SPSSAU提供两种设置:一种是完全相同数字超过一定比例时设置成无效样本。不认真填写者通常为了方便会选择相同的答案,一般以量表题选择相同数字超过70%作为标准。​另一种是缺失一定比例设为无效样本。

异常值:如果存在缺失数据或在异常值的判断标准上,可设置数字为null,即异常值处理。

常用的统计方法有:频数分析、描述分析、卡方分析、二元logit回归等。我们按照提纲依次进行分析即可。同时重点注意下表格格式,专业的调研报告(和论文一样)对格式有着严格的要求。建议统一修改表格格式,避免有遗漏。

涉及重点数据,比如占比非常高的选项,可以用不同颜色标出。

也可以适当添加图表的使用。一图胜万言,多用图表来呈现所想表达的内容,更有直观性。

spss数据分析报告通常是先描述分析结果,然后结合结果和背景信息进行总结。

如果内容较多,建议在每部分最后添加一小节作为总结部分,同时可以针对结论给出建议或解决方案等。最后别忘了添加附录。通常将调查问卷、统计结果等作为附件内容。方便读者查询。

二、SPSS数据分析心得小结

SPSS数据分析心得小结_数据分析心得分享

学习数据分析之spss分析工具,可真的不是一般的功夫,真的要很认真和很细心才能做得好spss。下面我来和大家分享一下关于SPSS数据分析心得小结,希望大家从这数据分析心得分享中能得到一些启示和指导。

心得1:拿到一份数据,或者在看到国内外某个学者的文章有想法而自己手里的数据刚好符合这个想法可以做时,在整理好数据后不要急于建模。一定要对数据做缺失值处理、异常值处理。在数据预处理的基础上再进一步建模,否则可能得到错误的结果。

心得2:承接心得1,数据预处理怎么做。一是缺失值的处理。我个人有几个看法:一是数据样本量足够大,在删除缺失值样本的情况下不影响估计总体情况,可考虑删除缺失值;二是数据样本量本身不大的情况下,可从以下两点考虑:1是采用缺失值替换,SPSS中具体操作为“转换”菜单下的“替换缺失值”功能,里面有5种替换的方法。若数据样本量不大,同质性比较强,可考虑总体均值替换方法,如数据来自不同的总体(如我做农户调研不同村的数据),可考虑以一个小总体的均值作为替换(如我以一个村的均值替换缺失值)。2是根据原始问卷结合客观实际自行推断估计一个缺失值的样本值,或者以一个类似家庭的值补充缺失值。

心得3:承接心得1,数据预处理第二点异常值的处理。我大概学了两门统计软件SPSS和Stata,SPSS用的时间久些,熟悉一下,Stata最近才学,不是太熟。关于这点我结合着来说。关于异常值的处理可分为两点,一是怎么判定一个值是异常值,二是怎么去处理。判定异常值的方法我个人认为常用的有两点:1是描述性统计分析,看均值、标准差和最大最小值。一般情况下,若标准差远远大于均值,可粗略判定数据存在异常值。2是通过做指标的箱图判定,箱图上加“*”的个案即为异常个案。发现了异常值,接下来说怎么处理的问题。大概有三种方法:一是正偏态分布数据取对数处理。我做农户微观实证研究,很多时候得到的数据(如收入)都有很大的异常值,数据呈正偏态分布,这种我一般是取对数处理数据。若原始数据中还有0,取对数ln(0)没意义,我就取ln(x 1)处理;二是样本量足够大删除异常值样本;三是从stata里学到的,对数据做结尾或者缩尾处理。这里的结尾处理其实就是同第二个方法,在样本量足够大的情况下删除首尾1%-5%的样本。缩尾指的是人为改变异常值大小。如有一组数据,均值为50,存在几个异常值,都是500多(我这么说有点夸张,大概是这个意思),缩尾处理就是将这几个500多的数据人为改为均值 3标准差左右数据大小,如改为100。总结而言,我个人认为做数据变换的方式比较好,数据变换后再做图或描述性统计看数据分布情况,再剔除个别极端异常值。

心得4:如何做好回归分析。经过多次实战,以及看了N多视频,上了N多课,看了N多专业的书。我个人总结做回归的步奏如下:1是承接心得1-3,对数据进行预处理,替换缺失值和处理异常值;2是将单个自变量分别与因变量做散点图和做回归,判定其趋势,并做好记录(尤其是系数正负号,要特别记录);3是自变量和因变量一起做相关系数,看各个变量相关关系强弱,为下一步检验多重共线性做准备;4是自变量多重共线性诊断。若变量存在多重共线性,可采用主成分回归,即先将存在多重共线性的变量做主成分分析合并为1个变量,然后再将合并成的新变量和其余自变量一起纳入模型做回归;5是做残差图,看残差图分布是否均匀(一般在 -3个单位之间均匀分布就比较好);6是报告相应结果。

心得5:看到论坛上有网友问为什么他(她)老师不建议采用后向步进法处理变量多重共线性。记得张文彤老师说过他有个同学做过一个研究,即采用后向步进法剔除变量的方式去做回归,得到的结果犯错的几率比较大。张老师也不建议用这个方法处理多重共线性。处理多重共线性比较好的方法是做主成分回归。

心得6:有个朋友问我在报到回归结果时用未标准化的回归系数好,还是用标准化后的回归系数好。我个人觉得这个问题仁者见仁智者见智,要看想表达什么。具体而言,如果想表达在其它条件不变的情况下,自变量X每变化1个单位,因变量变化多少个单位,这种情况用未标准化回归系数就好;如果想比较各个自变量对因变量影响的相对大小,即判断相对而言,哪个变量对因变量影响更大。这时需要消除量纲的影响,看标准化后的回归系数。

心得7:这是投稿一篇SSCI外审专家提出的意见。我做的是无序多分类logistic回归模型。因变量分了5类,有一类个数比较多,达到300多,有1-2类个案比较少,只有30左右。专家提到了要做稳健性检验。这个用stata软件编程加一个robust即可解决问题。不知道在SPSS里面怎么做。欢迎知道的朋友一起讨论下。我个人认为这是一个好问题的。不做稳健性检验模型可能受一些极端值的影响,结果不稳定。可能本来显著的变量剔除1-2个样本后就变得不显著了。所以做回归分析稳健性检验也比较重要。

PS:如果有可能,我希望在后面的心得中附上实际操作的步奏图和解释的。看看有没有人需要这个。不然可能说的一些东西需要的人能看明白,但还是不清楚怎么做。希望和大家一起交流学习。

以上是小编为大家分享的关于SPSS数据分析心得小结的相关内容,更多信息可以关注环球青藤分享更多干货

三、spss线性回归分析结果解读是什么

spss线性回归分析解读结果。

一般来说线性回归分析报告包含以下三个方面。

一、模型摘要,摘要告诉我们模型的拟合性如何。

二、方差分析,方差分析的本质是检测r平方是否显著大于零。

三、回归分析,回归系数表格列出了输出模型的偏回归系数估计值,非标准化系数表示各变量的拟合系数。

纳入那些自变量进行回归预测是由研究者根据专业和经验结合统计结果决定。而不是单单根据统计结果决定,当自变量较多需要筛选自变量时,不同的筛选方法,也会得到不同的结果。

spss发展历程

SPSS是世界上最早的统计分析软件,由美国斯坦福大学的三位研究生Norman H.Nie、C.Hadlai(Tex) Hull和Dale H.Bent于1968年研究开发成功,同时成立了SPSS公司,并于1975年成立法人组织、在芝加哥组建了SPSS总部。

2009年7月28日,IBM公司宣布将用12亿美元现金收购统计分析软件提供商SPSS公司。如今SPSS的最新版本为25,而且更名为IBM SPSS Statistics。迄今,SPSS公司已有40余年的成长历史。

关于spss数据分析报告,spss数据分析报告的结论怎么写的介绍到此结束,希望对大家有所帮助。

标签:      

2024年招生 在线咨询
本站覆盖全国各省市中高职专本科院校及计划外招生院校,汇总各校招生要求及专业信息,如您今年尚未被任何院校录取,请自愿填写下表,我们将在全国范围内筛选适合您就读的大学,安排招生老师与您沟通。即刻报名,圆大学梦!
*

学生姓名

*

手机号码

*

户籍地址

*

当前学历

 

意向专业

立即提交 《隐私保障》

分享:

qq好友分享 QQ空间分享 新浪微博分享 微信分享 更多分享方式
(c)2024 www.chinazhenyi.com All Rights Reserved SiteMap 联系我们 | 陕ICP备2023010308号-3